Local Likelihood Estimation for Covariance Functions with Spatially-Varying Parameters: The convoSPAT Package for R
نویسندگان
چکیده
In spite of the interest in and appeal of convolution-based approaches for nonstationary spatial modeling, off-the-shelf software for model fitting does not as of yet exist. Convolution-based models are highly flexible yet notoriously difficult to fit, even with relatively small data sets. The general lack of pre-packaged options for model fitting makes it difficult to compare new methodology in nonstationary modeling with other existing methods, and as a result most new models are simply compared to stationary models. Using a convolution-based approach, we present a new nonstationary covariance function for spatial Gaussian process models that allows for efficient computing in two ways: first, by representing the spatially-varying parameters via a discrete mixture or “mixture component” model, and second, by estimating the mixture component parameters through a local likelihood approach. In order to make computations for a convolutionbased nonstationary spatial model readily available, this paper also presents and describes the convoSPAT package for R. The nonstationary model is fit to both a synthetic data set and a real data application involving annual precipitation to demonstrate the capabilities of the package.
منابع مشابه
Comparison of Local and Non-Local Methods in Covariance Matrix Estimation by Using Multi-baseline SAR Interferometry and Height Extraction for Principal Components with Maximum Likelihood Approach
By today, the technology of synthetic aperture radar (SAR) interferometry (InSAR) has been largely exploited in digital elevation model (DEM) generation and deformation mapping. Conventional InSAR technique exploits two SAR images acquired from slightly different angles, in which the information of elevation and deformation can be captured through processing of the phase difference of the image...
متن کاملA Generalized Convolution Model for Multivariate Nonstationary Spatial Processes
We propose a constructive method for specifying flexible classes of nonstationary stochastic models for multivariate spatial data. The method is based upon convolutions of spatially varying covariance functions and produces mathematically valid covariance structures. This method generalizes the convolution approach suggested by Majumdar and Gelfand (2007) to extend multivariate spatial covarian...
متن کاملSpatioTemporal: An R Package for Spatio-Temporal Modelling of Air-Pollution
Modelling of Gaussian spatio-temporal processes provide ample opportunity for different model formulations, however two principal directions have emerged. The data can be modelled either as a set of spatially varying temporal basis functions or as spatial fields evolving in time. This package provides maximum-likelihood estimation and crossvalidation tools for the first case. Development of the...
متن کاملStructure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s
In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...
متن کاملEvaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling
One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016